PRODUCTS
  Please complete the fields below and we
  will respond to your inquiry within 24 hours
     *
     *
     *
     *
     *
    
    


EventsHome>Events
A new light protection mechanism discovered in plants

Scientists at Imperial College London have discovered a feedback mechanism at the heart of photosynthesis that protects plants from damage by light.

The researchers have discovered that the key enzyme in photosynthesis can tune its activity to avoid being damaged by light and oxygen.

Knowing how photosynthesis is regulated and protected could allow scientists to improve the process, potentially making agriculture and food production more efficient.

For example, understanding how this regulatory mechanism works could help researchers to identify the factors that are beneficial for plant growth and to define how to adjust these in order to optimise growth in controlled cultivation.

Photosystem II, the central enzyme in photosynthesis, uses solar energy to remove electrons from water. The electrons are used to fix carbon dioxide from the atmosphere, creating a form of carbon that constitutes the fuel and building blocks for life. Photosystem II changed the planet by putting most of the energy into the biosphere and all of the oxygen into the atmosphere.

BACKED-UP ELECTRONS

When leaves close their pores to prevent water loss, this also prevents air exchange so that carbon dioxide cannot enter the system. As the carbon dioxide inside the leaf is used up, the electrons have nothing left to react with and so they build up.

Although carbon dioxide is not entering the system, light still is, generating excess electrons. As the electrons have nowhere to go, they instead engage in ‘back-reactions’ that form a ‘killer molecule’ called singlet oxygen. This killer molecule can damage the photosystem II enzyme.

Now, by using a technique called spectro-electrochemistry, researchers have discovered a mechanism that protects the enzyme from this damage. The trapped electrons trigger the release of a bicarbonate molecule from the enzyme, which was previously thought to be constantly bound to it.

The new study, published in Proceedings of the National Acedemy of Sciences, shows that this bicarbonate release not only slows down the water-splitting reaction but crucially also protects the enzyme from light damage due to the harmful back-reactions.

    BACK
  Copyright(C)2016, SINOTOP INDUSTRIAL AND TRADING CO.,LTD. All Rights Reserved.Supported by ChemNet ChinaChemNet Toocle Copyright Notice